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Abstract

This project aims to investigate the problem of indoor robot navigation and people detection with a 3D
LiDAR. The overall goal was to develop a robot that can navigate autonomously throughout a previously
mapped indoor environment. During navigation, the robot should automatically detect and avoid colliding
with any moving pedestrians. A TurtleBot 2 running ROS on board a Nvidia Jetson Xavier was used,
together with a Velodyne VLP-16 (”Puck”) LiDAR.
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1 Introduction

Robots are becoming increasingly common in a multitude of use cases in public environments. Specif-
ically, in the last decade, there has been much development and deployment of autonomous robots. This
includes autonomous vehicles, which are now relatively prevalent on city streets and highways. Apart from
autonomous vehicles, there has also been growth in the use of autonomous robots indoors. Examples include
warehouse robots used by e-commerce companies like Amazon, robot attendants at restaurants and other
service venues, and delivery drones that drive or fly to their destinations.

For all these autonomous robots, the perennial problem that needs to be resolved by robot designers is
that of autonomous navigation. Specifically, in indoor environment, there are additional unique challenges.
When a robot navigates inside a building, it must interact with pedestrians in a socially cooperative manner.
It needs to be able to detect and track pedestrians, and then modify its navigation path to avoid these
moving pedestrians. This poses a significant difficulty, as the robot will need to perform this in real time
while it is moving.

There are a few layers involved in allowing for autonomous navigation in a robot. First, there needs to
be technology to create a 2D or 3D map of the robot’s environment. The purpose of creating a map is to
enable localization, for the robot to know its position for navigation. We will discuss each of these layers in
further details in sections 5,6 and 7 respectively.

2 Background

2.1 Related Work

There has been much development of various navigation and pedestrian detection algorithms using
various sensors.
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Figure 1: Typical workflow of preparing a robot for autonomous navigation

The GMapping [1] and amcl [2] packages provide a mapping and localization solution for use with 2D
sensors like a 2D LiDAR. These packages are able to work out of the box for many robot kits compatible
with ROS today. ROS also provides a navigation stack [3] that contains GMapping and amcl, together with
a costmap generator and path planner. This navigation stack allows for the autonomous navigation of a
robot through a 2D mapped environment.

There has also been projects aimed at using a visible light camera such as the Intel RealSense camera
for pedestrian detection, and then transmitting the coordinates of any detected pedestrians to the navigation
stack such that the robot can plan a path that avoids the pedestrian. [4]

2.1.1 LiDAR

LiDAR stands for Light Detection and Ranging. It uses light in the form of a pulsed laser to measure
distances to objects. The time taken for laser pulses to bounce off objects and return to the sensor is
measured, allowing a real-time 3D map of the surroundings to be created [5]. It is similar in operation to
Radar apart from the fact that it uses light (specifically usually Infrared beams) waves, hence the similar
name.

LiDAR sensors are widely used for geodesy and computer vision applications. Specifically relevant to us
is the fact that LiDAR is able to create a precise map of ever-changing surroundings quickly and regardless
of weather and visibility conditions. Thus LiDAR is commonly a key component for autonomous robots,
being one of the sensors that the robot uses for safe navigation.

2.2 Motivation

We can see that there is currently no comprehensive package that uses only a 3D LiDAR for pedestrian
detection and avoidance. While 2D navigation works perfectly well for indoor robots, the major disadvantage
of using 2D sensors (for instance a 2D 1-line LiDAR) for pedestrian detection is that it is very difficult to
differentiate a pedestrian from any regular obstacle. A pedestrian on a 1-line LiDAR will simply appear as
a series of a few points that are closer to the robot than the wall. This means that it will be impossible to
track the pedestrian for obstacle avoidance.

Thus, we aim to create a autonomous robot that performs mapping, localization and pedestrian detection
and avoidance using only a 3D LiDAR.

3 Robot Component Overview

3.1 Robot Operating System (ROS)

The Robot Operating System (ROS) is a open source robotics middleware suite. Contrary to its name,
it is not an operating system, but rather a software platform for robotics software development [6]. ROS
provides a common foundation for developers in different areas of robotics, and has become the industry
standard for many robots.

ROS comes with deep integrations with Linux Operating Systems, and has major explicit integrations
with Ubuntu. ROS comes in many different versions and releases, and is usually directly tied to a certain
Ubuntu release. There are 2 main versions of ROS now, ROS 1 and ROS 2. ROS 2 is the newer version that
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has been redeveloped from the ground up, and is functionally quite different from ROS 1. In this project,
we used ROS 1 Melodic Morenia installed on Ubuntu 18.04.

A common tool that we used throughout this project is Rviz. Rviz is a visualization tool built for
ROS. It is specifically designed to interpret and visualize ROS messages sent through ROS topics, which are
essentially packets of data sent through a stream from other programs.

3.2 TurtleBot 2

The TurtleBot is a robot kit designed to integrate with ROS. The TurtleBot is designed to be modular
and be easy to set up for educational applications. It is made up of a Kuboki base, and is designed to be
connected to a laptop or an embedded computer. TurtleBot is supplied with drivers and software for ROS,
so that it is easy to connect it with other ROS programs.

3.3 Nvidia Jetson

The computer that we used to power the TurtleBot and run ROS is the Nvidia Jetson Xavier. The
Nvidia Jetson is a series of embedded computing boards designed for embedded AI applications. Jetson
boards contain a Tegra CPU and full GPU on board, making them suitable for our application. A Jetson
board can either be connected to a monitor, or be run as a remote desktop and be connected to via VNC.

3.4 Velodyne VLP-16 LiDAR

The Velodyne VLP-16 LiDAR we used is a 16-line 3D LiDAR. It typically scans at 10hz, and can be
integrated with ROS to send its scanned data as pointcloud messages. It has a 100m range, and uses 905nm
infrared lasers for scanning its surroundings [7]. With its 16 lines, it is able to scan up to 300,000 points
per second. It has a 30◦ vertical (+/ − 15◦) and 360◦ horizontal field of view. With an IP67 rating, it is
resilient for challenging environmental conditions.

4 Setup of TurtleBot

4.1 Software Setup

The Jetson had Ubuntu 18.04 with ROS Melodic installed, so we proceeded to set it up for a remote
connection. There was some difficulty in getting the remote server working, due to the need to register any
embedded device on the Brown network before it can be used.

4.2 Hardware Setup

The TurtleBot 2 was supplied disassembled, so we had to put it together at first. Also, due to the
field of view of the LiDAR, it needed to be mounted at a slightly higher position than the top frame of the
TurtleBot allowed for. Thus, it was necessary to print out a base for the LiDAR. A 3D model was found
online on Thingiverse, a website for sharing 3D printable models [8]. This was 3D printed at the Brown
Design Workshop.
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Figure 2: A 3D view of the VLP-16 LiDAR mount for TurtleBot.

The TurtleBot is made up of platforms with mounting holes at various heights. Upon assembly of the
TurtleBot, the mount was attached via screws to the highest platform to maximize the LiDAR’s field of
view. The LiDAR is connected to the Jetson via ethernet, and the TurtleBot is connected via USB.

To power all components of the system while keeping the robot mobile, we had 2 options. First, we
could run everything off the internal battery of the TurtleBot. The drawback of doing that is the fact that
the TurtleBot’s internal battery will be depleted very rapidly. Hence, we chose to power components with
an external battery pack. The external battery pack has a 12V and a 9V outlet. The 12V outlet is used to
power the Jetson and the 9V outlet is used to power the LiDAR.

Figure 3: The final assembled TurtleBot.

5 SLAM

SLAM refers to Simultaneous Localization and Mapping. It is a method that allows a robot to build
a map and localize itself within that map at the same time[9]. SLAM algorithms allow robots to map out
unknown environments and then carry out other tasks. Robots running SLAM algorithms are generally able
to localize themselves only with onboard sensory apparatus. There are two common types of sensors used:
cameras (visual SLAM) and LiDAR (LiDAR SLAM).

Many different SLAM algorithms are available today. Researchers at the University of Zagreb [10]
have looked into different SLAM algorithms. They came up with 3 main candidates: LOAM [11], Google’s
Cartographer [12], and hdl graph slam [13]. We chose to look into Hdl graph slam in more detail, as we
initially desired to run all aspects of the workflow (mapping, localization and pedestrian detection) in 3D.

In the SLAM mapping process, we would manually drive the robot around by running turtlebot teleop.
The teleoperation package allows the TurtleBot to be driven via the keyboard remotely.
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5.1 Hdl graph slam

Hdl graph slam was a package developed by researchers from AIST to work with a separate 3D local-
ization as well as 3D people detection and tracking package. These three packages were meant to monitor
and track people while the system is carried in a backpack. It was meant to record people behaviors in an
indoor environment. Because of the similarity in working environment, as well as the fact that there are
packages designed for other parts of our workflow, we chose to test out this package. The way that these
packages integrate is shown in the figure below.

Figure 4: Diagram of components of how Hdl graph slam integrates with other packages from AIST. [13]

The Hdl graph slam generates a map in the form of point clouds, and can be saved in the form of a pcd
file.

5.2 GMapping

Upon determining that the Hdl navigation stack was unsuitable for our application due to poor pedes-
trian detection performance, we looked into using other packages for navigation. GMapping is a SLAM
algorithm that performs 2D mapping. To use this package with our 3D LiDAR, we would choose 1 of the
16 lines to act as input data for the algorithm.

This map that this produced works well. The algorithm produces a 2D occupancy grid map, which
directly represents whether an arbitrary point is occupied or not. This map can be visualized in Rviz. An
image of the map together with the localization can be seen in figures 6 and 7.

6 Localization

6.1 Hdl localization

After successfully obtaining a pcd file from Hdl graph slam, this can be fed into the Hdl localization
package. This localization package is able to perform localization globally with or without an initial guess,
by matching up current sensor data with the points from the loaded map. These points that have been
matched and aligned are published to the /aligned points ROS topic.
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Figure 5: A successful mapping and localization of the Brown Center For Information Technology 5th floor
corridor.

As we can see in figure 5, the points that are matched up are marked with orange squares, while the
rest of the map scanned by Hdl graph slam are of various colors. Thus we can say that localization works
successfully with this package. The

6.2 Amcl

Amcl is a localization package that is able to localize a robot within a 2D map. The package is a part
of the ROS navigation stack package, and is designed to work with GMapping.

By passing it a map file that we made with GMapping, Amcl was able to determine the robot’s position
and orientation after being given an initial guess in Rviz.
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Figure 6: Amcl working well on the 2D map generated by GMapping.
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Figure 7: The 2D map with the 3D LiDAR’s scans overlaying it and the robot’s current position.

From figure 6, we can see the robot’s position and orientation marked out by the robot model in the
center, and the red arrows to indicate its orientation. In figure 7, we can see that the 2D map and localization
can be overlapped with the 3D LiDAR’s current scan data, and thus it can be designed to work wtih a 3D
person detection algorithm. We can simply use navigation in 2D for our application because an indoor robot
is only able to move in 2 dimensions. Hence, there is no need for height information to be recorded in the
map.

7 People Detection

7.1 Hdl people tracking

This package first performs Haselich’s clustering technique to detect human candidate clusters, and
then applies Kidono’s person classifier to eliminate false detections. People will be marked in Rviz as colored
cubes.

Unfortunately, in our testing, this package worked extremely poorly. As we can see in figure 6, the
package detected many false positives, which were marked out by the different colored cuboids on the map.
Furthermore, the package completely failed to detect the actual person walking along the corridor in our
tests. The combination of many false positives, and a false negative for the actual person led us to look at
other people detection packages.
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Figure 8: Substandard performance by Hdl people tracking which contained many false positives.

7.2 Online learning

Another package we investigated was the online learning package by [14]. This package is an online
learning framework for people classification in 3D LiDAR scans. It uses a support vector machine (SVM),
specifically the libsvm package to classify people. It comes in an offline and online version, where the online
version trains itself on new data constantly to improve predictions. Any pedestrian candidates are marked
with a blue cuboid bounding box, and after performing classification, any pedestrians that are detected are
marked with green bounding boxes. The detection algorithm runs at 10 hz.

Unfortunately again, the ability of the package to detect people was poor. As can be seen in figure 9,
the package fails to detect any pedestrians and mark them out with green bounding boxes. Even the actual
person walking around (annotated with a red arrow in the figure) is not detected, and moreover not even
marked as a candidate with a blue bounding box. Instead, we can see that a couple of random spots are
marked as candidates (annotated with blue arrows).

There were occasions where the person walking around is detected as a candidate, as shown in figure 10
but the issue is that there is no persistence in the bounding box, and it disappears immediately in the next
iteration of the detection algorithm.

The developers of this package also directed us to a GUI tool that they made [15]. This tool is supposed
to be able to annotate any 3D LiDAR data (in the form of per-frame pcd files), and should be used to
indicate the locations of pedestrians. The tool can then train the SVM, and make the model more accurate.
However, due to the fact that the tool was developed for use in Ubuntu 14.04, we were unable to get the
tool to work properly on our Jetson.
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Figure 9: Performance by the online learning package was also poor.

Figure 10: A one-off detection of a walking pedestrian.
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8 Conclusions

Overall, while we were not successful in our original goal of developing an integrated autonomous
navigation stack that performs pedestrian detection and avoidance with a 3D LiDAR, we have managed to
explore many different packages and algorithms for the different parts of the stack.

We can see that there are many packages that fulfill individual components of the navigation workflow,
but they are unable to work well together. Integrating and ensuring that data is properly passed between
different nodes of the navigation workflow is key to ensuring that autonomous navigation works effectively.

8.1 Future Work

In the future, more work can be put into training the machine learning models, or perhaps writing
a custom model for pedestrian detection. There can also be more research into the navigation and path
planning algorithms that the robot will use. During the course of the project, we also discovered that
Matlab contains many toolboxes such as the ROS Toolbox, LiDAR toolbox, and Navigation Toolbox. These
toolboxes are more substantially documented as compared to the Github repositories that were tested in
this project, and also provide significantly more example code. Using Matlab may help to provide a more
straightforward integration of the various parts of the navigation workflow.
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